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Electromagnetic energy flux vector for a dispersive linear medium
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The electromagnetic energy flux vector in a dispersive linear medium is derived from energy conservation
and microscopic quantum electrodynamics and is found to be of the Umov form as the product of an electro-
magnetic energy density and a velocity vector.
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Poynting’s theorem provides the linkage between electro-
magnetic fields and energy by manipulating the Maxwell
equations to form an energy continuity equation in terms of
the divergence of an energy flux vector. A closed form for the
electromagnetic energy is obtained for fields in the vacuum
or in nondispersive linear media, but that is not the case for
macroscopic fields in dispersive continuous media �1�. Con-
sequently, the continuum electrodynamic treatment of the en-
ergy in dispersive media has been a long-standing issue for
macroscopic quantization of the field �2�. While Poynting’s
theorem is based on the macroscopic Maxwell fields, Lorentz
taught us that continuum electrodynamics has a microscopic
basis. At the fundamental level of quantum electrodynamics,
Lorentzian electrodynamics corresponds to the quantized
vacuum field interacting with localized quantum oscillators.
Here, we derive a macroscopic energy flux vector from en-
ergy continuity and microscopic quantum electrodynamics.
The new energy flux vector appears in the Umov �3� form of
an energy density multiplied by a velocity vector instead of a
cross-product of the electric and magnetic fields.

The purpose of Poynting’s theorem is to construct an en-
ergy continuity equation for macroscopic electric and mag-
netic fields from Maxwell’s equations. However, continuity
equations for conserved quantities can be derived under quite
general conditions in a manner analogous to conservation of
mass in hydrodynamics �4�. Adopting a rectangular coordi-
nate system, x, y, and z, a differential control volume is
delineated by a cube with sides of length dx, dy, and dz. The
electromagnetic energy density is a scalar field u�x ,y ,z , t�.
The velocity field is denoted by v�x ,y ,z , t�=vxî+vyĵ+vzk̂,

where î, ĵ, and k̂ are unit vectors in the direction of the
respective x, y, and z axes. The property fields on the sur-
faces of the control volume can be related to the properties at
the center of the volume by a Taylor series expansion. The
energy density at each of two parallel faces of the control
volume is

ux+dx/2 = u +
�u

�x

dx

2
+ ¯ , �1a�

ux−dx/2 = u −
�u dx

+ ¯ . �1b�

�x 2
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The energy is associated with photons and travels with the
electromagnetic field. The velocity of the field at each side of
the control volume,

�vx�x+dx/2 = vx +
�vx

�x

dx

2
+ ¯ , �2a�

�vx�x−dx/2 = vx −
�vx

�x

dx

2
+ ¯ , �2b�

is likewise obtained by a Taylor series expansion. The energy
density and velocity at the other two pairs of faces are ob-
tained by a similar procedure. The divergence theorem

�
S

uv · dA = �
V
� �uvx

�x
+

�uvy

�y
+

�uvz

�z
�dxdydz �3�

is then obtained from the expansions in the usual way.
The net energy that passes through the control surface in a

given time must equal the change in the energy inside the
control volume. This statement of conservation of energy
may be written as

�
S

uv · dA = − �
V

�u

�t
dxdydz . �4�

Combining Eqs. �4� and �3�, one obtains the continuity equa-
tion

� · uv = −
�u

�t
�5�

and we can identify

S = uv �6�

as the Umov energy flux vector. This result is constructed by
energy balance, alone, and is independent of both Maxwell’s
equations and Poynting’s theorem. In order to make the en-
ergy flux vector specific to electromagnetic radiation, we
substitute

u =
1

8�
�E2 + H2� �7�

for the energy density on the left-hand side of Eq. �5�, and

identify
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S =
c

8�
�E2 + H2�êk �8�

as the energy flux vector in the direction of the unit vector êk.
In order to show that this result is consistent with Poynting’s
theorem, the electromagnetic energy density �7� is substi-
tuted into the right-hand side of Eq. �5� yielding

� · uv = −
1

4�
�E ·

�E

�t
+ H ·

�H

�t
� . �9�

Substituting the Maxwell curl equations into Eq. �9� results
in

� · S = −
c

4�
�E · �� � H� − H · �� � E�� �10�

or

� · S =
c

4�
� · �E � H� �11�

upon application of a vector identity. The Poynting vector

S =
c

4�
E � H �12�

and Eq. �8� are equivalent expressions of the energy flux
vector because the electric and magnetic fields are orthogo-
nal and have the same magnitude in the vacuum.

Because the electromagnetic energy density in the
vacuum, Eq. �7�, is derived by Poynting’s theorem, the deri-
vation of the free-space energy flux vector �8� from the en-
ergy continuity equation does not constitute a replacement
for the historic theorem. Beyond this limitation, however, the
Umov energy continuity treatment of the energy flux vector
is more general and is consistent with a Hamiltonian-centric
view of electrodynamics, and quantum electrodynamics in
particular.

In the electrodynamics of continuous media �1�, the elec-
tromagnetic energy is derived by manipulating the macro-
scopic Maxwell equations to obtain an energy continuity
equation. However, the quantum electrodynamic treatment of
energy is more fundamental and the energy flux vector can
be derived by coupling energy continuity to quantum elec-
trodynamics. Starting from a microscopic quantum electro-
dynamic model of a linear isotropic homogeneous medium
as localized quantum oscillators embedded in the vacuum,
one can obtain the macroscopic effective Hamiltonian �5–7�,

Henh = �
l�

� �lnl�āl
†āl + 1/2� . �13�

Here, āl and āl
† are macroscopic, or averaged, field-mode

operators with the nonzero commutation relation �āl , āl�
† �

=�ll�. The mode-dependent, and therefore frequency-
dependent, effective index nl is constructed from mode-
dependent quantities that, in the continuum limit, can be as-
sociated with the vacuum, electric, and magnetic
susceptibilities �7�. The Hamiltonian �13� becomes
056613
Henh =
1

2�
l�

�nlp̂l
2 + nl�l

2q̂l
2� �14�

by defining macroscopic operators

p̂l = − i	��l

2
�āl − āl

†� , �15a�

q̂l =	 �

2�l
�āl + āl

†� �15b�

in analogy to their microscopic counterparts. The associated
classical Hamiltonian is �5,7�

Henh =
1

2�
l�

�nlpl
2 + nl�l

2ql
2� . �16�

This is the only result that we need from quantum electrody-
namics and the remainder of the discussion is purely classi-
cal. We then write the classical Hamiltonian as

Henh =
1

2
�

V
�

ll����

	nlnl�plpl�ul · ul�

+ c2qlql��� �
ul

	nl
��� �

ul�

	nl�
��dv , �17�

where the ul are the members of a complete set of orthonor-
mal eigenfunctions of �8�

� � � �
ul

	nl

−
nl

2�l
2

c2

ul

	nl

= 0 �18�

with periodic boundary conditions. Each mode of the field is
associated with a different frequency �l. If the medium is
dispersive, then each mode travels with a different speed c /nl
as indicated in Eq. �18�. Because the enhanced energy den-
sity in a linear medium is a consequence of the reduced
velocity of light, the speed, relative to c, is applied as a scale
transformation �5� to the energy density from Eq. �17� and
we obtain the energy flux vector

S = uv =
c

2 �
ll����


plpl�ul · ul�

+
c2

	nlnl�

qlql��� �
ul

	nl
��� �

ul�

	nl�
��êk. �19�

We find the macroscopic energy flux vector in a dispersive
linear medium to be

S =
c

8�
�X�2 + Y�2�êk �20�

upon defining electriclike and magneticlike fields
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X� = − �
l�

	4�pl�t�ul�r� , �21a�

Y� = �
l�

	4�

nl
cql�t�� �

ul�r�
	nl

. �21b�

The new energy flux vector �20� has been derived from first
principles by transforming the fundamental energy quantity
of quantum electrodynamics to a macroscopic classical en-
ergy density and applying energy conservation.

The fields X� and Y� have been defined by quantities that
appear as a consequence of the energy continuity relations. A
more meaningful physical interpretation of the energy flux
vector is obtained by relating these fields to the classical
macroscopic fields. In Ref. �5�, the quantum electrodynamic
model of a dispersive linear medium was used to obtain just
such a relation in the context of the field and material com-
ponents of the energy. It was shown in Ref. �5� that the
electric and magnetic fields are given by

E� = − �
l�

	4�

nl
pl�t�ul�r� , �22a�

H� = �
l�

	4�c

nl
ql�t�� �

ul�r�
	nl

. �22b�

The fields X� and Y� can be viewed as a combination of the
respective electric or magnetic field with the appropriate re-
action field. Then the energy flux vector of Eq. �20� repre-
sents the continuity of the field energy, but does not address
the energy in the medium itself. This material portion of the
energy is associated with the enhanced energy density and is
accounted for in the reduction of the velocity of the field
�5,9� rather than appearing explicitly in the energy flux vec-

tor. If dispersion may be neglected, we obtain

056613
S =
cn

8�
�E�2 + H�2�êk �23�

in the limit X�→	nE� and Y�→	nH�. Further, the energy
flux vector can be written as the cross-product of two vectors

S =
cn

4�
E� � H� �24�

in the same dispersionless limit.
Inspecting the right-hand side of the energy continuity

condition �5�,

−
�u

�t
= −

1

2 �
ll����


	nlnl�plṗl�ul · ul�

+ c2qlq̇l��� �
ul

	nl
� · �� �

ul�

	nl�
�� , �25�

it does not appear that Eq. �25� can be expressed in closed
form as the cross-product of an electriclike field and a mag-
neticlike field in a dispersive medium. This problem is the
converse trying to derive a closed form for the electromag-
netic energy in a dispersive linear medium from the macro-
scopic Maxwell equations by Poynting’s theorem, establish-
ing the inequivalence of the Poynting and Umov vectors for
dispersive linear media.

In conclusion, the microscopic quantum electrodynamic
Hamiltonian is the fundamental energy quantity of electrody-
namics. This Hamiltonian for a linear medium can be trans-
formed directly into a macroscopic classical energy density
in terms of electric and magnetic fields. Dispersion is natu-
rally present in the microscopic quantum electrodynamic
model of a linear medium �10� and then manifested in the
macroscopic fields. Combining the Hamiltonian-based en-
ergy density and continuity of energy, we derived the elec-
tromagnetic energy flux vector in a dispersive linear me-
dium. The new energy flux vector is found to be of the Umov
form as the product of an energy density and a velocity vec-
tor rather than in the form of the Poynting vector as the

cross-product of the electric and magnetic fields.
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